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Epidemics of malaria in the East African highlands in the last 2
decades have often been associated with climate variability, par-
ticularly the El Niño-Southern Oscillation (ENSO). However, there
are other factors associated with malaria risk and there is increased
interest in the influences of the Indian Ocean Dipole (IOD), a
climate mode of coupled ocean–atmosphere variability, on East
African rainfall. This study explores the relationship between IOD
and the number of malaria patients in 7 hospitals from 2 districts
in the western Kenyan highlands, controlling for the effects of
ENSO. We examined temporal patterns (1982–2001) in the number
of malaria cases in relation to the dipole mode index (DMI), defined
as the difference in sea surface temperature anomaly between the
western (10°S-10°N, 50°-70°E) and eastern (10°S-0°, 90°-110°E)
tropical Indian Ocean. We used Poisson regression models, ad-
justed for ENSO index Niño 3 region (NINO3), seasonal and inter-
annual variations. The number of malaria patients per month
increased by 3.4%–17.9% for each 0.1 increase above a DMI
threshold (3–4 months lag). Malaria cases increased by 1.4%–
10.7% per month, for each 10 mm increase in monthly rainfall (2–3
months lag). In 6 of 7 places, there was no evidence of an
association between NINO3 and the number of malaria cases after
adjusting for the effect of DMI. This study suggests that the
number of malaria cases in the western Kenyan highlands in-
creases with high DMI in the months preceding hospital visits.

climate � East African highlands � El Niño-Southern Oscillation �
Plasmodium falciparum � time series study

Malaria is a major human health threat and occurs globally
in tropical and subtropical regions. Despite the long

history of efforts to control malaria, it remains a major threat to
human health. Indeed the threat is increasing, a fact witnessed
by an increase in malaria outbreaks in the East African highlands
(�1,500 m above sea level). Malaria outbreaks occurred spo-
radically in the highlands from the 1920s to the 1950s and
became rare thereafter (1, 2). Since the 1980s, however, malaria
epidemics have occurred with heightened frequency throughout
the Kenyan highlands, causing serious mortality and morbidity
(3, 4). Unlike their counterparts in malaria-endemic regions,
recent studies have suggested that the residents of highland areas
generally lack immunity to Plasmodium falciparum and are
particularly vulnerable to malaria infection (5, 6). Possible
reasons for the highland malaria include increased drug resis-
tance (7, 8), a change in local malaria transmission resulting from
land-use changes (9, 10), increased travel from endemic regions
(11), and climate change, including rising temperature (12).
These factors might create ideal conditions for a long-term trend
for the spread of malaria, but they cannot fully explain interan-
nual variations in the incidence of malaria epidemics.

Climate variability is suspected to be a major factor in the
recent resurgence and interannual variations in the incidence of
malaria (13, 14). In particular, the El Niño-Southern Oscillation
(ENSO), a source of interannual climate variability, was strongly
suspected to be related to epidemics in several highland regions
in early 1998. ENSO can cause increases in temperature and
rainfall, which in turn increase the availability of mosquito

breeding grounds and malaria transmission (15, 16). However,
factors other than ENSO are also clearly associated with malaria
risk in the highlands, because epidemics also occur during weak
ENSO periods. Mouchet et al. linked the 1994 malaria epidemic
in the highland region of southwest Uganda to heavy rains in the
preceding months, but a strong ENSO was not observed during
this period (17). The highlands of western Kenya also experi-
enced a malaria epidemic after heavy rains in late 1994 (18).

The Indian Ocean Dipole (IOD), also called the Indian Ocean
Zonal Mode, was discovered in the late 90s and is another
climate mode as a result of ocean–atmosphere interaction, which
causes interannual climate variability in the tropical Indian
Ocean (19, 20). The IOD characterizes sea surface temperature
(SST) anomalies during this event, with warmer than normal
SSTs over the western basin and cooler than usual SSTs in the
eastern basin. The East African region receives above normal
rainfall during positive IOD events, while rainfall in Indonesia
and Australia is reduced, resulting in severe drought (19).
Although the extent to which it is independent of ENSO has been
debated (21), there is growing evidence that this air–sea inter-
action process is unique and inherent to the Indian Ocean
(22–24). Historical data show that extreme dipole mode events
have occurred 8 times in the past 50 years and that the strong
ENSO in 1997 coincided with an IOD event (25).

The discovery of this dipole mode has the potential to improve
long-term forecasting of rainfall anomalies and potential malaria
epidemics in East Africa. Because malaria transmission is closely
associated with rainfall, the extreme rainfall caused by the IOD
has been suggested to be a cause of malaria epidemics in the East
African highlands (26). The purpose of this study was to explore
the relationship between the IOD and the incidence of malaria
in the western Kenyan highlands, using time-series methodology
controlling for the effects of ENSO.

Results
The time series of the number of malaria inpatients per month
in the Kapsabet district hospital, the rainfall in Kapsabet, and the
DMI and Niño 3 region (NINO3) during the study period are
shown in Fig. 1 (see Figs. S1 and S2 for other hospitals). Strong
IOD events occurred in 1994 and 1997, during which the DMI
peaked in August and October, respectively. Strong ENSO
events were observed in 1982–83, 1986–87, and 1997–98. The
Pearson’s correlation coefficient between DMI and NINO3 was
0.36 during the study period. The rainfall in both districts
generally showed the well-known bimodal seasonality, with the
first peak from March to May (often referred to as the long
rains), and the second peak from September to November (the
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short rains). In 1994 and 1997, exceptionally high rainfall was
observed in both districts during the short rains, which preceded
a sharp increase in the number of malaria inpatients in the
Kapsabet district hospital (Fig. 1). In the Kisii district, an
increase in both in- and outpatients after the 1997 short rains was
also observed in the district hospital (Fig. S1) and in most of the
other hospitals. No obvious increase in the number of hospital
patients was observed after the 1994 short rains except in
Kapsabet.

Relationship with DMI and NINO3. The generalized linear Poisson
regression model revealed that an increase in the risk of hospital
visits for malaria was associated with high DMI in most hospitals
in both districts (Fig. 2, for inpatients in the Kapsabet and Kisii
district hospitals; see Fig. S3 for other hospitals). There was no
evidence of the association between the number of malaria cases
and NINO3 except in Chepterit. The linear threshold model
revealed that the number of malaria inpatients in the Kapsabet
and Kisii district hospitals increased by 17.9% (95% CI: 13.7–
22.4) and 15.0% (95% CI: 10.9–19.4), respectively for a 0.1
increase above the DMI threshold value, with a lag of 3–4
months (Table 1). The effect of DMI varied between locations

from 3.4% to 17.9%.

Relationship with Rainfall. The risk of hospital visits for malaria
increased with rainfall in most hospitals in both districts (Fig. 2,
for inpatients in the Kapsabet and Kisii district hospitals; see Fig.
S4 for other hospitals). There appeared to be an increase in the
number of malaria inpatients in the Kapsabet and Kisii district
hospitals when the rainfall, with a lag of 2–3 months, was higher
than the estimated threshold of 130 mm (95% CI: 120–140) and
80 mm (95% CI: 70–90), respectively. Each 10 mm increase in
monthly rainfall above the threshold was associated with an
increase in the number of malaria inpatients of 10.7% (95% CI:
8.2–13.2) in Kapsabet and 4.9% (95% CI: 3.6–6.2) in Kisii. The
effect of rainfall varied between locations from 1.4% to 10.7%.

Relationship with DMI Adjusted for Rainfall. The risk–response
relationships between DMI and the number of malaria cases
after adjustment for rainfall, and for seasonal and interannual
variations and NINO3, are shown in Fig. S5 (for inpatients in
Kapsabet and Kisii district hospitals). The positive slope with
higher DMI slightly declined after adjustment for rainfall both
in Kapsabet and Kisii. After adjustment, we estimated that the
effect of DMI on the number of malaria inpatients in Kapsabet

Fig. 2. Relationships between the relative risk (RR) of malaria scaled to the
mean monthly number of inpatients in Kapsabet (A) and Kisii (B) district
hospitals and the dipole mode index (DMI) (lag 3–4 months), and the rainfall
(lag 2–3 months). The middle line in each graph shows the estimated spline
curve, and the top and bottom lines represent 95% confidence limits.

Fig. 1. Time series for the number of malaria inpatients each month in the
Kapsabet district hospital, the rainfall in Kapsabet, the dipole mode index
(DMI), and the NINO3 SST anomaly (NINO3), 1982–1999. The number of
malaria inpatients each month and rainfall are represented by a standardized
anomaly relative to the 1982–1999 mean for each variable (The standardized
anomaly was calculated only for descriptive analysis and raw data were used
for regression analysis).

Table 1. Association between malaria cases and dipole mode index (DMI), NINO3 SST anomaly (NINO3), and rainfall: Effect estimates
and thresholds

District Hospital In-/outpatient

DMI (lag 3–4 months) NINO3 (lag 1–2 months) Rainfall (lag 2–3 months)

% change
(95% CI)a

Threshold
(95% CI)

% change
(95% CI)a

Threshold
(95% CI)

% change
(95% CI)a

Threshold (mm)
(95% CI)

Nandi Kapsabet In 17.9 (13.7, 22.4) 0.7 (0.5, 0.8) — — 10.7 (8.2, 13.2) 130 (120, 140)
Out 9.6 (6.8, 12.4) 0.6 (0.5, 0.4) — — 2.9 (2.0, 3.9) 40 (30, 60)

Mosoriot Out 3.9 (1.7, 6.1) �0.4 (�0.5, �0.3) — — 6.0 (4.1, 8.0) 100 (90, 110)
Chepterit Out 6.6 (3.3, 10.1) 0.5 (0.4, 0.6) 102.7 (34.4, 205.7) 3.5 (3.4, -) 6.1 (4.6, 7.6) 90 (80, 100)

Kisii Kisii In 15.0 (10.9, 19.4) 0.7 (0.6, 0.8) — — 4.9 (3.6, 6.2) 80 (70, 90)
Out 17.6 (13.0, 22.4) 1.2 (1.1, 1.3) — — 1.4 (0.5, 2.2) 60 (50, 70)

Keumbu Out — — — — — —
Iyabe Out 3.4 (1.8, 5.0) L — — 2.0 (0.7, 3.4) L
Itierio Out 14.3 (8.0, 20.9) 1.0 (0.9, 1.1) — — 3.4 (1.9, 5.0) 120 (100, 130)

L, linear association between exposure and the number of cases. aPercent change in the number of malaria cases for each 0.1, 0.1, and 10 mm increase in DMI,
NINO3, and rainfall above threshold.
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and Kisii district hospitals decreased to 13.6% (95% CI: 8.8–
18.7) and 12.2% (95% CI: 7.8–16.8), respectively. The effect of
DMI on the number of malaria outpatients also decreased in
most hospitals in both districts (results not shown). Fig. 3 shows
the relationship between DMI and rainfall in Kapsabet and Kisii
with a lag of 1 month. There appears to be an increase in rainfall
with higher DMI in both districts.

The model goodness of fit for different climate factors (DMI,
NINO3, and rainfall) is shown in terms of Akaike’s information
criterion (AIC) (Table S1). The AIC of a model including DMI
but no NINO3 is smaller than that including NINO3 but no DMI
in both Kapsabet and Kisii. The smallest AIC was obtained for
the model incorporating DMI, NINO3, and rainfall.

The incorporation of Fourier terms (up to the fifth harmonic
adding 1 harmonic at a time) into the model, in place of indicator
variables for months, had little effect on the estimates of the
effects of DMI, NINO3, and rainfall (results not shown).

Discussion
In the western Kenyan highlands, the number of malaria cases
was positively associated with DMI above a threshold level, after
adjusting for potential confounding factors such as NINO3, and
seasonal and interannual variations. There was no strong evi-
dence of the association between NINO3 and the number of
malaria cases after adjusting for the effect of DMI.

Malaria dynamics in the East African highlands have been
investigated in relation to climatic factors. Hay et al. showed that
mean temperature and rainfall have not changed significantly
over the past century at 4 locations in the East African highlands,
although the incidence of malaria has increased over the last 2
decades (27). However, Pascual et al., using the same tempera-
ture data, found evidence for a significant warming trend (12).
Zhou et al. (13) demonstrated that rainfall and temperature play
an important role in the variability in monthly numbers of
malaria outpatients in the East African highlands, after control-
ling for seasonal variations and autocorrelation. A recent study
of multiyear cycles of malaria outbreaks in a Kenyan highland
region showed that both endogenous disease dynamics and
rainfall played a role in the temporal dynamics of the disease,
over different time scales (14).

The role of ENSO in the interannual variability in East
African rainfall has been extensively examined (28, 29). These
studies found that ENSO had some influence on equatorial and

coastal East African rainfall, with warm events being associated
with higher rainfall and cold events with lower rainfall. However,
the association was weak, and there was considerable geographic
variation. By comparison, the impact of Indian Ocean variability
on East African rainfall has received relatively little attention.
However, following the discovery of the IOD there has been
increased interest in this issue. Black et al. (30) showed that the
East African short rains during dipole years were consistently
greater than those during nondipole years, regardless of NINO3,
and concluded that the link between the short rains and SST in
the tropical Pacific was weaker than its link with the IOD.
Another study investigated the relationship between East Afri-
can short rains and DMI and NINO3 using a partial correlation
technique, and showed that the influence of the IOD on the
short rains was overwhelming, compared with that of the ENSO:
the correlation between ENSO and the short rains was not
significant when the IOD influence was excluded (31). An
atmospheric circulation model also suggests that the Indian
Ocean SST exerts a greater influence than the Pacific over the
East African short rains (32). Similarly our study found that DMI
was positively associated with rainfall in Kapsabet and Kisii.

Our study also found that the 3- to 4-month lag in the positive
association between DMI and the number of malaria cases
coincided with the sum of the lag between DMI and rainfall (1
month) and the lag between rainfall and the incidence of malaria
(2–3 months). Furthermore, the effect of DMI on the number of
malaria cases diminished after adjusting for rainfall, suggesting
that part of the effect of DMI on the incidence of malaria could
be explained by the effect of DMI on rainfall. While these
findings do not directly represent a causal connection, when
placed in the context of increasing evidence on the effect of
positive IOD on the East African short rain (31, 32), they point
toward at least 1 hypothesis that may explain the connection.
IOD leads to increased rainfall, which would create numerous
small water pools that become potential breeding grounds for
malaria vectors. The primary malaria vector species in the
highlands, Anopheles arabiensis and A. gambiae, mainly breed in
sun-lit small temporary pools (10, 33), and their larvae take only
1–2 weeks to grow into adults (34). Thus the increased rainfall
by DMI would lead to a rapid increase of vector population in
a short period (35), which results in an increased risk of malaria
transmission. High humidity associated with rainfall enhances
the longevity of malaria vectors, which would also increase the
risk of malaria transmission because longer-lived vectors have
greater vectorial capacity (more chances for transmission and
reproduction) (36). This hypothesis only explains the effect of
DMI through rainfall. There are, however, likely to be pathways
other than rainfall because the effect of DMI on the number of
malaria cases diminished but did not totally disappear after
adjusting for rainfall. Investigations into other possible pathways
of the IOD–malaria relationship, particularly the role of local
weather conditions, are clearly warranted.

Nonclimatic factors could modify the effect of IOD on the
incidence of malaria. Local enforcement of eradication measures
potentially influences the seasonal and long-term variability of
the incidence of malaria. Malaria epidemics were not reported
in the highlands of western Kenya after an eradication campaign
using residual insecticides in the 1950s (37, 38). Chloroquine
could have been effective in the suppression of malaria
epidemics until the emergence of resistance (7, 8). Land use
change also inf luences malaria transmission and may inf luence
the effects of IOD by altering microclimatic conditions such as
temperature, humidity, and surface runoff (39, 40). Changes in
the public health infrastructure may also affect population
vulnerability and therefore enhance or reduce the magnitude
of the relationship.

The study design used here is time-series regression, compar-
ing monthly counts of patients in the hospitals with exposure

Fig. 3. Relationships between rainfall scaled as relative risk to the mean
monthly rainfall in Kapsabet (1982–1999) (A) and Kisii (1986–2000) (B) and the
dipole mode index (DMI) (lag 1 month). The center line in each graph shows
the estimated spline curve, and the Upper and Lower lines represent 95%
confidence limits.
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measures. The underlying hypothesis is that part of the variance
of the monthly distribution of malaria patients is associated with
the monthly fluctuations of the exposure indicator, after con-
sidering all potential confounding factors. The main advantage
of this design is that the population under study serves as its own
control, and covariates that vary between subjects but not over
time are not potential confounders. Long-term population
trends such as changes in the number of the population in an area
are not likely to act as confounders because trends in rates are
allowed for in the model. Variables that change with time, for
example temperature, can confound the relationship of interest
if they are correlated with DMI or rainfall, but their effect is
partially controlled because seasonal patterns are allowed for in
the model. There may be concerns about the immune status of
the population at risk changing over time: Infection with Plas-
modium parasites increases immunity to reinfection, but popu-
lation immunity is not likely to change quickly (14). It therefore
seems unlikely that this would obscure the short-term (within 6
months) associations between malaria and the factors investi-
gated in this study. Less severe cases would be less likely to be
included, but this would not alter the validity of comparisons
between time periods, which is the subject of this study. A misdi-
agnosis of malaria would potentially affect the results of this study,
but only if over- (or under-) diagnosis was associated with the
climatic factors of interest, and there is no evidence for this.

High correlations between DMI and NINO3 during
September–November (the short rain season) have been re-
ported in previous studies (41, 42). Our data also had a high
correlation coefficient of 0.70 during the period, but the coef-
ficient was 0.36 with all year data. Because we were interested in
data throughout a year for 18 years, the high correlation during
the short rain season should not considerably affect our analyses.
Although the high correlation may still suggest that NINO3 is
also an important factor during the short rain season in the
highlands, the influence may be negligible or less than that of
DMI because NINO3 showed no significant effect after adjust-
ing for DMI in our regression analysis. Alternatively, an analysis
using a subsurface dipole mode index, defined by the difference
of the average 20 °C isotherm depth between the western and the
eastern tropical Indian Ocean, may provide a clear picture of
their influences during the short rain season, because the index
shows weak correlation with NINO3 but high correlation with
DMI (43). This analysis would possibly disaggregate to a greater
degree the effects local to the Indian Ocean basin from those
within the Indian Ocean.

Because of the large global burden and climate sensitivity of
malaria, the World Health Organization has proposed develop-
ing an early warning system for malaria epidemics using climatic
parameters (44). Highly accurate, climate-based prediction of
malaria epidemics, however, has not yet been developed, espe-
cially for highland regions where fluctuations in weather con-
ditions are large (45, 46). A system for forecasting IOD has been

developed, and IOD events are predictable 4 months in advance
(47). Combined with such a prediction model, the results of this
study provide the basis for predicting malaria epidemics in the
East African highlands and have the potential to improve disease
control. Because geographic variability in rainfall in the East
African highlands is high, our results indicate that the role of
IOD in the number of malaria cases in other places is also worthy
of investigation.

In summary, this study suggests that the number of malaria
cases in the western Kenyan highlands increases with high DMI,
even after potential confounding by the effect of ENSO is taken
into consideration. The association between DMI and the inci-
dence of malaria may be explained, in part, by the effect of DMI
on rainfall.

Methods
Malaria and Climate Data. The primary outcome for this study was the monthly
number of patients with malaria who visited 7 hospitals in 2 districts (Nandi
and Kisii) in the western Kenyan highlands (Fig. 4). For the 2 district hospitals
(Kapsabet and Kisii) that have inpatient departments, the number of in- and
outpatients for each month was collected. For the remaining 5 hospitals, we
just obtained data on outpatients. Detailed information on the locations of
the hospitals, number of malaria cases, and climatic conditions is presented in
Table 2. Diagnoses of malaria were made by physicians at the hospitals. Not all
diagnoses were microscopically confirmed.

Data on daily rainfall in Kapsabet and Kisii were obtained from the Kenyan
Meteorological Department and the total monthly rainfall was calculated
from these daily records. The strength of the IOD was measured by the DMI,
which is defined as the difference in SST anomaly between the western
(10°S-10°N, 50°-70°E) and eastern (10°S-0°, 90°-110°E) tropical Indian Ocean

Fig. 4. Locations of the 7 study hospitals in the highlands of western Kenya.

Table 2. Description of the study sites, monthly numbers of malaria cases, and meteorological data

District Hospital Location and elevation In-/outpatient

Malaria

Annual rainfall, mmPeriod Mean SD Min Max

Nandi Kapsabet (0.12°N, 35.06°E, 2000 m) In 1982–1999 171 171 14 1152 1520.8
Out 1983–1999 2024 1045 422 6913

Mosoriot (0.19°N, 35.10°E, 2090 m) Out 1990–1999 806 664 165 4372
Chepterit (0.22°N, 35.19°E, 2170 m) Out 1983–1999 348 325 47 2091

Kisii Kisii (0.40°S, 34.46°E, 1670 m) In 1986–2000 789 640 42 4820 2050.5
Out 1984–2000 2736 1338 333 12448

Keumbu (0.44°S, 34.50°E, 1470 m) Out 1985–2000 938 412 92 2775
Iyabe (0.41°S, 34.40°E, 1470 m) Out 1984–2000 622 306 19 1698
Itierio (0.40°S, 34.43°E, 1650 m) Out 1985–2000 130 104 6 466
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(19). The DMI data were derived from the Japan Agency for Marine-Earth
Science and Technology (JAMSTEC) (http://www.jamstec.go.jp/frcgc/research/
d1/iod/). The DMI values were calculated using SST data derived from the
National Oceanic and Atmospheric Administration (NOAA) Optimum Inter-
polation Sea Surface Temperature data set (48, 49). The base period for
calculating anomalies was 1970–2005. The values were standardized to zero
mean and unit standard deviation. The strength of the ENSO was measured by
SST anomalies in the NINO3 in the Pacific Ocean, which were derived from
NOAA Climate Prediction Center data (http://www.cpc.ncep.noaa.gov).

Statistical Analysis. We used 3 regression models in our analyses. The first
model identified the optimal time lags between malaria incidence and each
independent variable (DMI, NINO3, and rainfall) through separate regression
of malaria incidence on lags of each independent variable. The second model
used these identified optimal lags and incorporated DMI and NINO3 in a
Poisson generalized linear model (GLM). Based on the GLM findings, a third,
linear threshold model was then used to quantify the increase in malaria risk
associated with a change in each independent variable.

The question of interest in this study was ‘‘Is a change in the DMI in a given
month associated with a change in the number of malaria cases n months
later?’’ Temporal associations between climate and disease are confounded
by trends and seasonal patterns. To account for seasonality in the incidences
of malaria that are not directly because of the IOD, we included indicator
variables for months in the model. Indicator variables for the years of the study
were also incorporated into the model to allow for long-term trends and other
variations among years.

To account for delays in the effect of the IOD on the number of malaria
cases, lagged DMI variables were incorporated into the model. We considered
lags (delays in effect) of up to 6 months. To identify the optimum lag period,
we performed separate regressions for each lag (0, 1, 2, . . . , 6 months). We
separately incorporated DMI variables at each lag into a model comprising
indicator variables of months and years (i.e., a model without controlling for
mutual confounding between DMI and NINO3). The same procedures were
also applied to NINO3 and rainfall to identify the optimum lag for each
variable. All lags that showed significant (P�0.05 level) positive associations
are presented in Table 3. In most places, the associations between the number
of malaria cases and DMI, NINO3, and rainfall were significantly positive,

generally with lags of 3–4, 1–2, and 2–3 months, respectively, which were
determined to be the optimum lag period for each exposure variable. The final
models of DMI and NINO3 thus contained both of the variables of average DMI
at a lag of 3–4 months and average NINO3 at a lag of 1–2 months to control
for potential mutual confounding.

We examined the relationships between the number of malaria cases and
DMI, NINO3, and rainfall, using generalized linear Poisson regression models
allowing for overdispersion (50). To allow for autocorrelations, an autore-
gressive term of order 1 was incorporated into the models (51).

Natural cubic splines were used to create graphs of the relationships
between the number of malaria cases and DMI (NINO3 and rainfall), where the
number of malaria cases was plotted as smoothed functions of DMI (NINO3
and rainfall) (52). This is to assess visually the functional form of the adjusted
relationship, thereby identifying whether the relationship was likely to be
linear or not across the full range of independent variables. Natural cubic
splines have been used in time-series studies of climate–health relationships
of which the functional forms were expected to be nonlinear (53, 54). This
strategy involved dividing the DMI series into n-tiles and fitting cubic poly-
nomial to the DMI–malaria relationship in each interval. Each interval was
joined smoothly by a knot (the boundaries of the intervals) of which the
number determines the level of smoothing of the data. The number of knots
was decided to be 2 because this number of knots was expected to be
sufficient to allow flexibility to fit with the relationship but not too much to
obtain a general idea of functional form by exploratory analyses. The choice
of 2 knots was not critical to the results, as regressions with up to 5 knots
yielded similar relationships (data not shown).

For model diagnostics including the plots of model residuals, predicted and
observed time-series plots, and partial autocorrelation function of the resid-
uals, see Figs. S6 and S7; for Akaike’s information criterion (AIC) and model
deviance, see Table S2.

As the plots of the smoothed relationships between DMI, NINO3, or rainfall
and the number of malaria cases suggested log-linear associations above a
threshold, we then fitted the data to linear threshold models, i.e., models that
assume a log-linear increase in risk above a threshold and no increase in risk
below the threshold (53). The choice of the threshold was based on maximum
likelihood estimations over a grid of all possible 1-decimal-point values for
DMI and NINO3 and every 10 mm for rainfall, within a range indicated on the
exposure–malaria graphs. Likelihood profile confidence intervals (CIs) for
each threshold were calculated as the thresholds for which deviance of the
model was 3.84 more than the minimum. The increase in the number of
malaria cases that were associated with a 1-decimal-point increase in a given
measure of DMI and NINO3 and a 10-mm increase in a given measure of
rainfall above the thresholds, estimated as coefficients from the regression
model, was reported as the percentage change.

Finally, the relationship between DMI and the number of malaria cases was
estimated, adjusted for rainfall by incorporating the rainfall terms into the
model for DMI, to clarify what component of the DMI–malaria association was
through factors associated with rainfall.

Although the associations between rainfall and DMI was not the focus of
this study, we considered the broad form of the relationship to confirm
whether the link between IOD and East African rainfall observed in many
previous studies could also be seen in our study sites during the study period
(details are in SI Methods). All statistical analyses were carried out using Stata
10.0 (Stata Corporation, College Station, Texas).
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